Tetrahydrobiopterin determines vascular remodeling through enhanced endothelial cell survival and regeneration.
نویسندگان
چکیده
BACKGROUND Endothelial cell (EC) survival and regeneration are important determinants of the response to vascular injury that leads to neointimal hyperplasia and accelerated atherosclerosis. Nitric oxide (NO) is a key regulator of EC and endothelial progenitor cell function, but the pathophysiological mechanisms that regulate endothelial NO synthase in endothelial regeneration remain unclear. METHODS AND RESULTS Endothelium-targeted overexpression of GTP cyclohydrolase (GCH) I increased levels of the endothelial NO synthase cofactor, tetrahydrobiopterin, in an EC-specific manner and reduced neointimal hyperplasia in experimental vein grafts in GCH/apolipoprotein E-knockout mice. These effects were mediated through enhanced donor-derived survival and recipient-derived repopulation of GCH transgenic ECs, revealed by tracking studies in Tie2-LacZ/GCH-Tg/apolipoprotein E-knockout recipient mice or donor grafts, respectively. Endothelial GCH overexpression increased endothelial NO synthase coupling and enhanced the proliferative capacity of ECs and circulating endothelial progenitor cell numbers after vascular injury. CONCLUSIONS These observations indicate that endothelial tetrahydrobiopterin availability modulates neointimal hyperplasia after vascular injury via accelerated EC repopulation and growth. Targeting tetrahydrobiopterin-dependent endothelial NO synthase regulation in the endothelium is a rational therapeutic target to enhance endothelial regeneration and reduce neointimal hyperplasia in vascular injury states.
منابع مشابه
A default renal regeneration in chronic kidney disease.
As it is well established, the normal balance between renal microvascular injury and renal microvascular regeneration maintains the normal vascular integrity. In previous papers [1–3], we showed that: (1) in the normal balanced stage, renal microvascular injury may be induced by the enhancement of circulating toxins such as oxidative stress, associated with altered immunocirculatory balance bet...
متن کاملCCR2-mediated antiinflammatory effects of endothelial tetrahydrobiopterin inhibit vascular injury-induced accelerated atherosclerosis.
BACKGROUND Vascular injury results in loss of endothelial nitric oxide (NO), production of reactive oxygen species (ROS), and the initiation of an inflammatory response. Both NO and ROS modulate inflammation through redox-sensitive pathways. Tetrahydrobiopterin (BH4) is an essential cofactor for endothelial nitric oxide synthase (eNOS) that regulates enzymatic synthesis of either nitric oxide o...
متن کاملPivotal role for endothelial tetrahydrobiopterin in pulmonary hypertension.
BACKGROUND Pulmonary hypertension is a fatal disease characterized by vasoconstriction and vascular remodeling. Loss of endothelial nitric oxide bioavailability is implicated in pulmonary hypertension pathogenesis. Recent evidence suggests that the cofactor tetrahydrobiopterin (BH4) is an important regulator of nitric oxide synthase enzymatic function. METHODS AND RESULTS In the hph-1 mouse w...
متن کاملPossible involvement of hydroxyl radical on the stimulation of tetrahydrobiopterin synthesis by hydrogen peroxide and peroxynitrite in vascular endothelial cells.
We recently described that hydrogen peroxide (H2O2) stimulates the synthesis of tetrahydrobiopterin (BH4) through the induction of the rate-limiting enzyme GTP-cyclohydrolase I (GTPCH), and increases tetrahydrobiopterin content in vascular endothelial cells. Tetrahydrobiopterin is easily oxidized by peroxynitrite (ONOO-), but not by hydrogen peroxide. The aim of this study was to determine the ...
متن کاملBone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms.
RATIONALE Autologous bone marrow-derived or cardiac-derived stem cell therapy for heart disease has demonstrated safety and efficacy in clinical trials, but functional improvements have been limited. Finding the optimal stem cell type best suited for cardiac regeneration is the key toward improving clinical outcomes. OBJECTIVE To determine the mechanism by which novel bone-derived stem cells ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 128 11 Suppl 1 شماره
صفحات -
تاریخ انتشار 2013